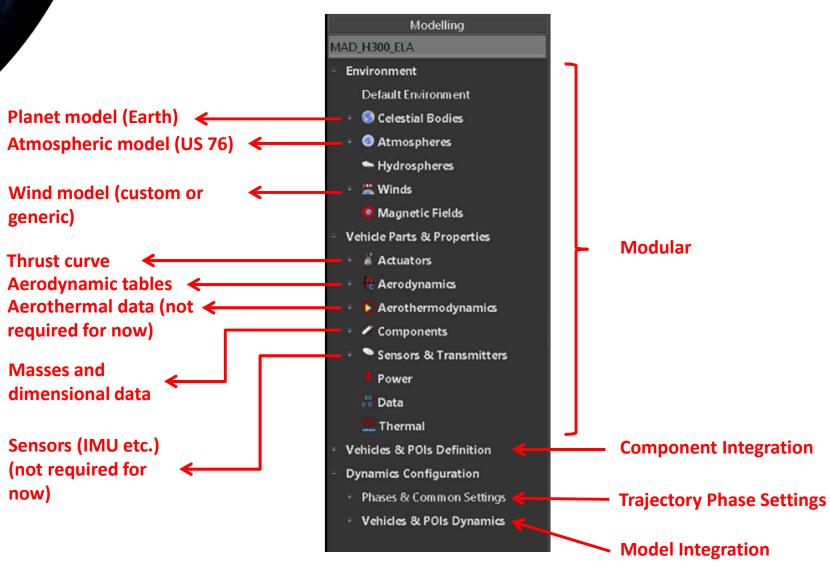


ASTOS Model Setup – Sub-Orbital Rocket Trajectory Modelling

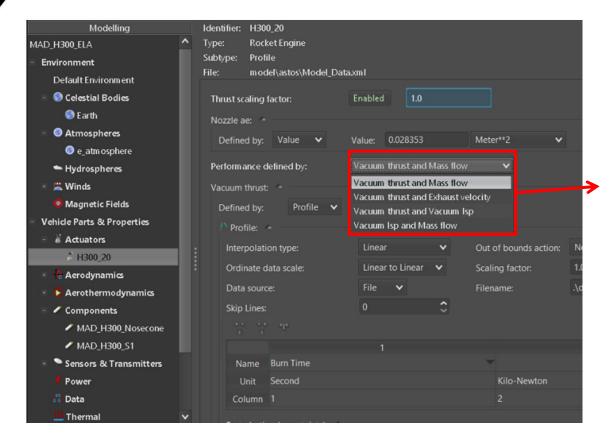
Jason Ong

Planet mod

High Level Overview



Thrust Model



Performance definition variations

- Typically vacuum thrust and mass flow is selected
- For simplification, mass flow is usually set as constant value

Thrust Model

General Thrust Equation

$$F = \dot{m} V_e + (P_e - P_0) A_e$$

For vacuum thrust,

$$P_0 = 0 ,$$

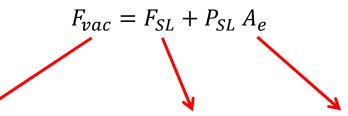
$$F_{vac} = \dot{m} V_e + P_e A_e$$

For sea level thrust,

$$P_0 = P_{SL} = 100 \text{ kPa}$$

 $F_{SL} = \dot{m} V_e + (P_e - P_{SL}) A_e$

Conversion of SL thrust to vacuum thrust:



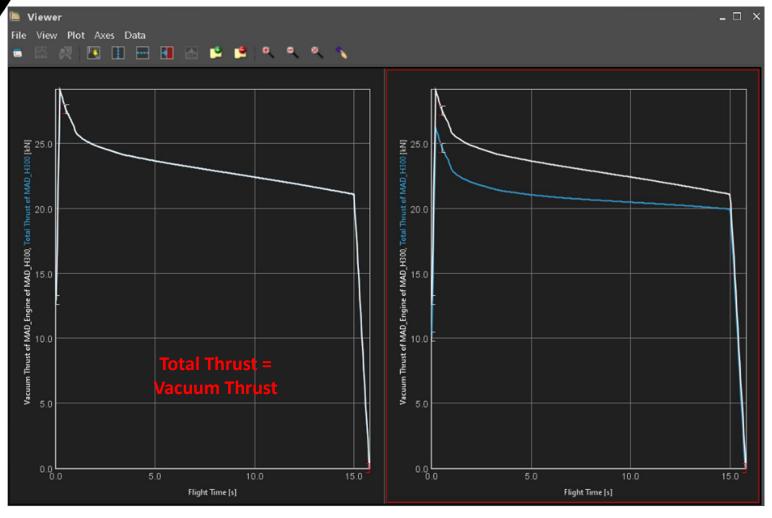
Vacuum thrust curve data as Astos input

Propulsion thrust curve data

Nozzle exhaust area as input

+ EOUATORIAL SPACE

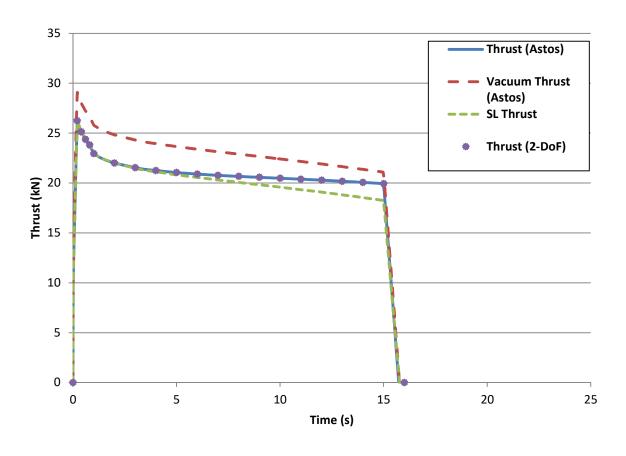
Thrust Model



Nozzle exhaust area = 0

Nozzle exhaust area ≠ 0

Thrust Model



Force and moment equations in body-fixed coordinates

$$\vec{F}_{\text{aero,B}} = qA_{\text{ref}} \begin{bmatrix} -C_A(x) \\ C_Y(x) + \left(\frac{dC_Y}{d\beta}(x)\right)\beta \\ -C_N(x) - \left(\frac{dC_N}{d\alpha}(x)\right)\alpha \end{bmatrix}_B$$

$$\vec{M}_{\text{aero}} = \begin{bmatrix} l \\ m \\ n \end{bmatrix}_{B} = qA_{\text{ref}}L_{\text{ref}} \begin{bmatrix} C_{LL_{t}}(x) \\ C_{M_{t}}(x) \\ C_{LN_{t}}(x) \end{bmatrix}_{B} + F_{Z}\Delta y + F_{Y}\Delta z + F_{Z}\Delta z - F_{Z}\Delta z$$

Moment Coefficients Computation (Astos Model Reference)

$$C_{LL_t}(x) = C_{LL}(x) + \beta \left(\frac{dC_{LL}}{d\beta}(x)\right) + P\left(\frac{dC_{LL}}{dP}(x)\right) + R\left(\frac{dC_{LL}}{dR}(x)\right) + \Delta_{fin}\left(\frac{dC_{LL}}{d\Delta_{fin}}(x)\right)$$

$$C_{M_t}(x) = C_M(x) + \beta \left(\frac{dC_M}{d\beta}(x)\right) + Q\left(\frac{dC_M}{dQ}(x)\right) + \alpha \left(\frac{dC_M}{d\alpha}(x)\right) + \alpha_t \left(\frac{dC_M}{d\alpha_t}(x)\right) + \dot{\alpha}_t \left(\frac{dC_M}{d\alpha_t}(x)\right) + \dot{\alpha}_t \left(\frac{dC_M}{d\dot{\alpha}_t}(x)\right)$$

$$C_{LN_t}(x) = C_{LN}(x) + \beta \left(\frac{dC_{LN}}{d\beta}(x)\right) + P\left(\frac{dC_{LN}}{dP}(x)\right) + R\left(\frac{dC_{LN}}{dR}(x)\right)$$

Currently Used

$$C_{LL_t}(x) = C_{LL}(x) + \beta \left(\frac{dC_{LL}}{d\beta}(x)\right) + P\left(\frac{dC_{LL}}{dP}(x)\right) + R\left(\frac{dC_{LL}}{dR}(x)\right) + \Delta_{fin}\left(\frac{dC_{LL}}{d\Delta_{fin}}(x)\right)$$

$$C_{M_t}(x) = C_M(x) + \beta \left(\frac{dC_M}{d\beta}(x)\right) + Q\left(\frac{dC_M}{dQ}(x)\right) + \alpha \left(\frac{dC_M}{d\alpha}(x)\right) + \alpha_t \left(\frac{dC_M}{d\alpha_t}(x)\right) + \dot{\alpha}_t \left(\frac{dC_M}{d\dot{\alpha}_t}(x)\right)$$

$$C_{LN_t}(x) = C_{LN}(x) + \beta \left(\frac{dC_{LN}}{d\beta}(x)\right) + P\left(\frac{dC_{LN}}{dP}(x)\right) + R\left(\frac{dC_{LN}}{dR}(x)\right)$$

For rotational symmetry, we assume:

$$\frac{dC_Y}{d\beta}(x) = -\frac{dC_N}{d\alpha}(x)$$
$$\frac{dC_M}{dO}(x) = \frac{dC_{LN}}{dR}(x)$$

Equivalent notations when compared to other literature:

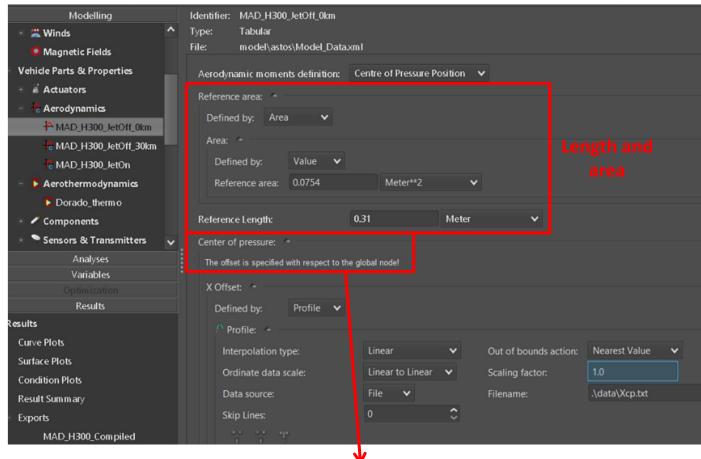
$$\frac{dC_{N}}{d\alpha}(x) - C_{N_{A}} \qquad \frac{dC_{M}}{dQ}(x) - C_{M_{Q}}$$

$$\frac{dC_{Y}}{d\beta}(x) - C_{y_{\beta}} \qquad \frac{dC_{LN}}{dR}(x) - C_{N_{R}}$$

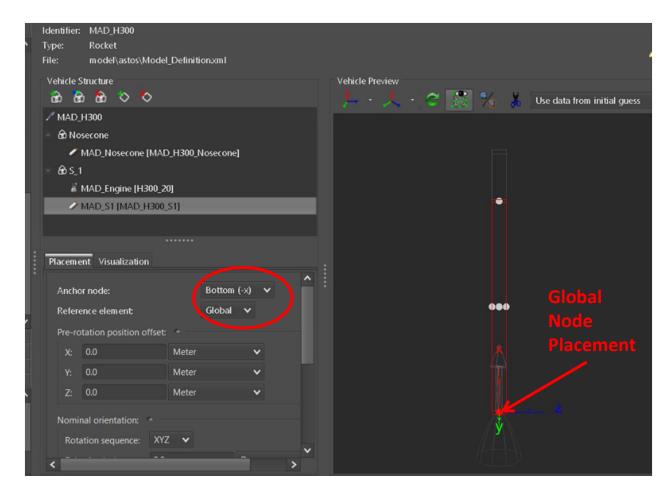
$$\frac{dC_{LL}}{dP}(x) - C_{L_{P}}$$

$$\frac{dC_{LL}}{d\Delta_{fin}}(x) - C_{L_{\delta}}$$

Definition of Reference Quantities



XCP point is relative to where global node is positioned.

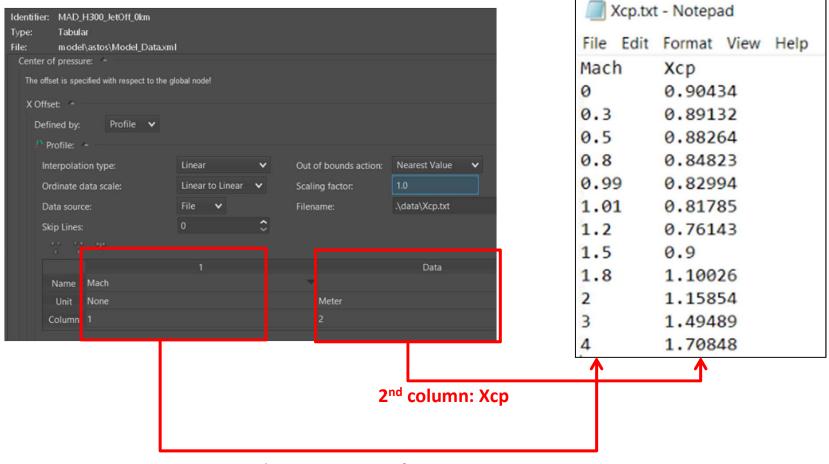


In this case, XCP is defined +ve since global node is at the bottom. In the case where global node is placed at tip of nose, XCP should be defined -ve.

EQUATORIAL SPACE

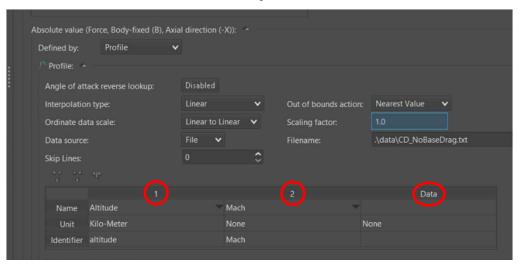
Aerodynamics Model

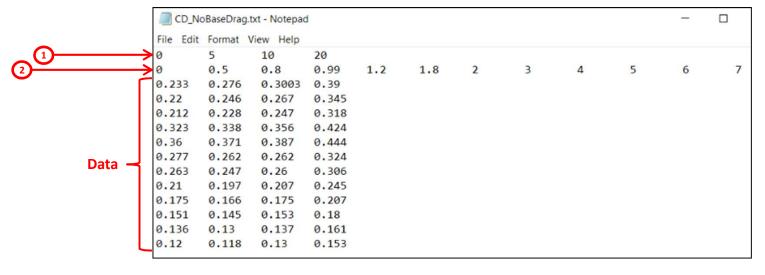
1D Interpolation



1st column : Mach (Values must be monotonically increasing)

2D Interpolation





2D Interpolation (according to Astos)

Example 1: 4 x 5 data matrix

The tabular data

y	0	0.50	1.00	1.30	1.50
1.00	0.11	0.12	0.13	0.14	0.15
2.00	0.21	0.22	0.23	0.24	0.25
3.00	0.31	0.32	0.33	0.34	0.35
4.00	0.41	0.42	0.43	0.44	0.45

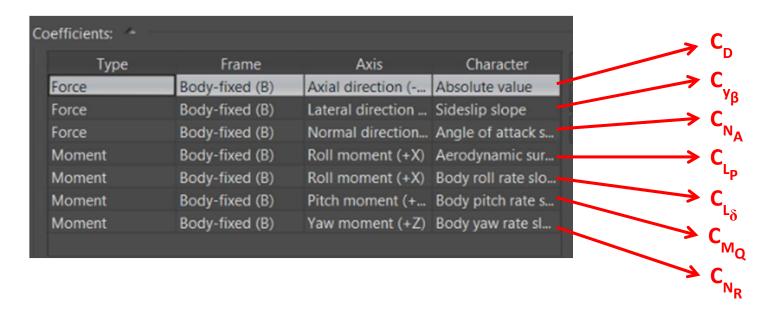
Fig. 10.2: A 4x5 matrix.

should be formatted in a file as follows:

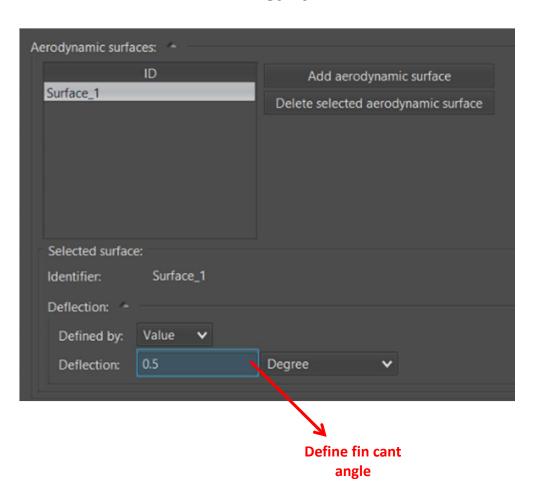
```
0.00 0.50 1.00 1.30 1.50 - 1st indep. variable x
1.00 2.00 3.00 4.00 - 2nd indep. variable y
0.11 0.12 0.13 0.14 0.15 \
0.21 0.22 0.23 0.24 0.25 | x-y matrix
0.31 0.32 0.33 0.34 0.35 |
0.41 0.42 0.43 0.44 0.45 /
```

Fig. 10.3: A 4x5 matrix format in a file ready to be imported

Coefficients



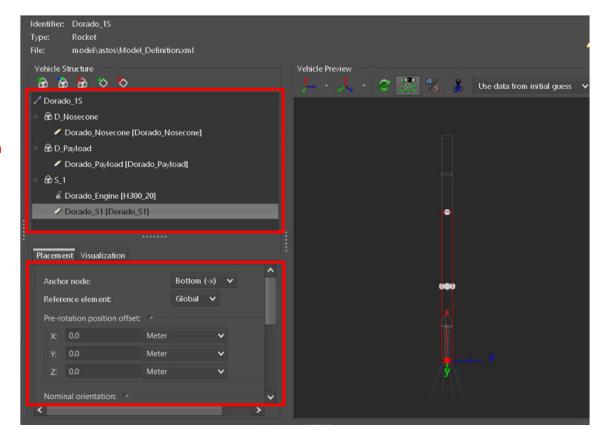
Fin Cant



Vehicle Definition

Specify components in use

Define component position using anchor node placement, and position/rotation offsets

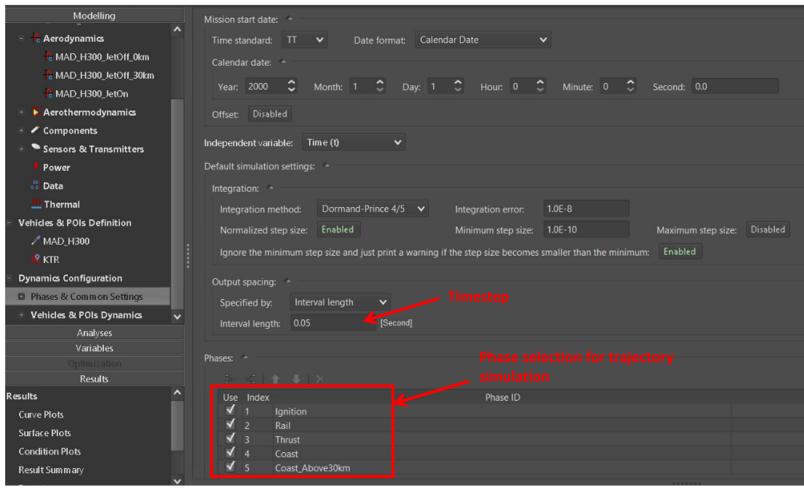


Vehicle Definition

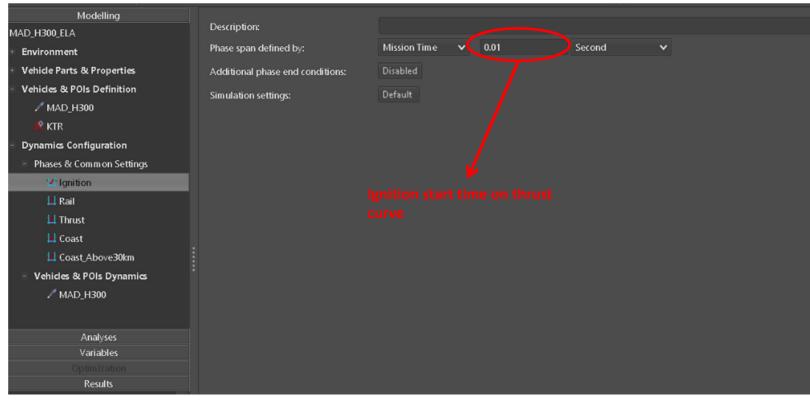
✓ Dorado_1S					^	
= 🙃 D_Nosecone						
Dorado_Nosecone [Dorado_Nosecone]						
≕ 🙃 D_Payload						
Dorado_Payload [Dorado_Payload]						
÷ 6ac s_1						
Dorado_Engine [H300_20]						
✓ Dorado_S1 [Dorado_S1]				~		
					:	
Placement Visualization Propulsion						
					^	
	Nominal orientation:					
	Rotation sequence: XYZ 🕶					
	Euler Angle 1:	0.0	Degree			
	Euler Angle 2:	0.0	Degree			
	Euler Angle 3:	0.0	Degree			
Post-rotation position offset Disabled						
Degrees of freedom:				~		

For specifying thrust misalignments during Monte Carlo simulations

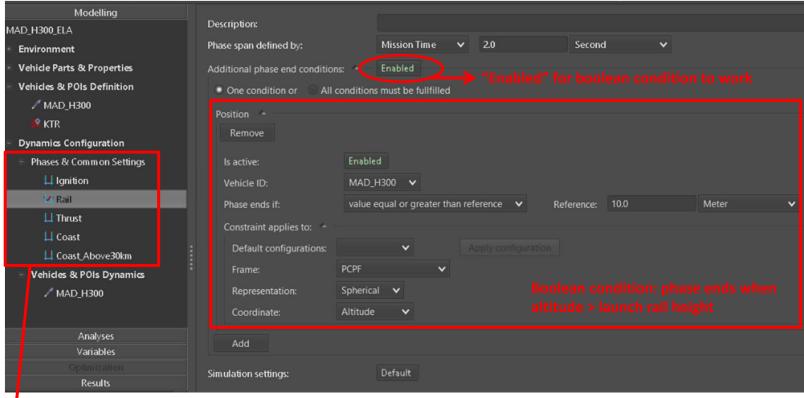
Overall



Ignition Phase



Rail Phase

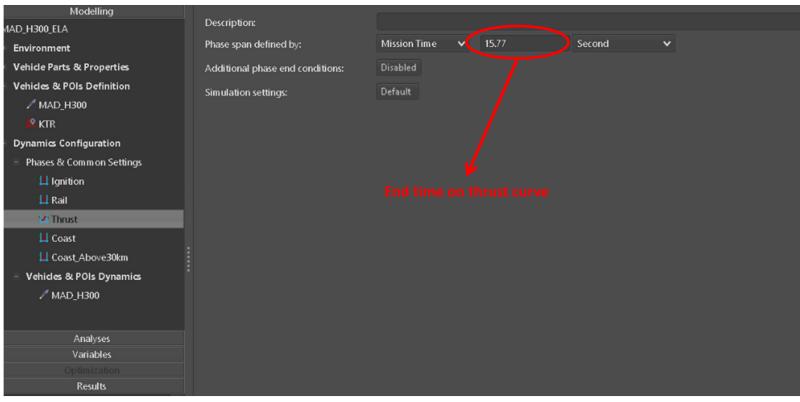


No. of phases vary from case to case, depends on dynamics of trajectory phases

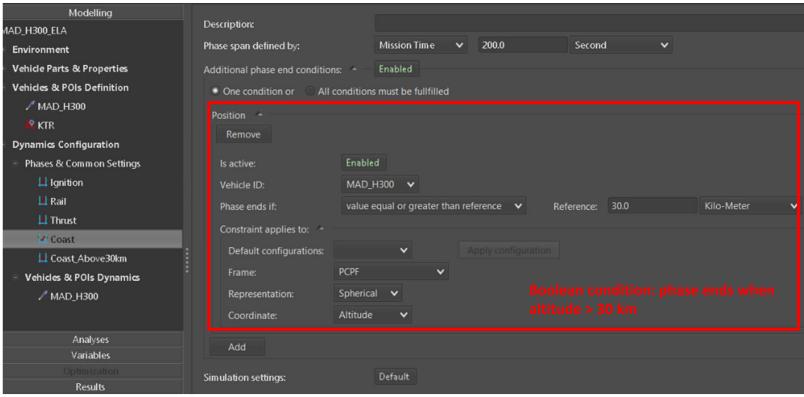
Phase ends when

- Boolean condition is reached, OR
- Phase span reaches mission time or phase time defined

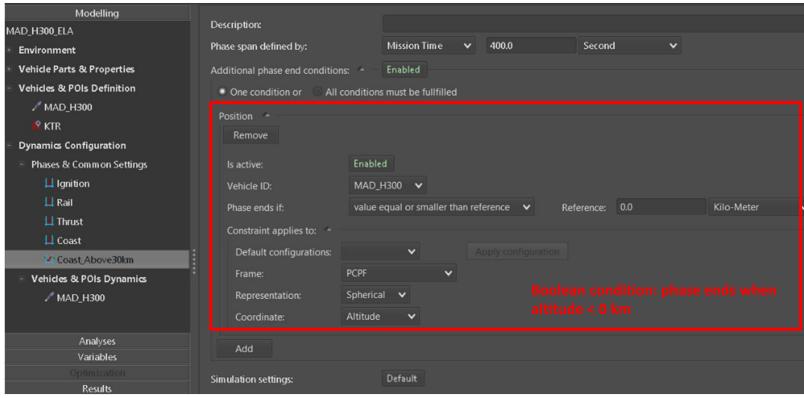
Thrust Phase



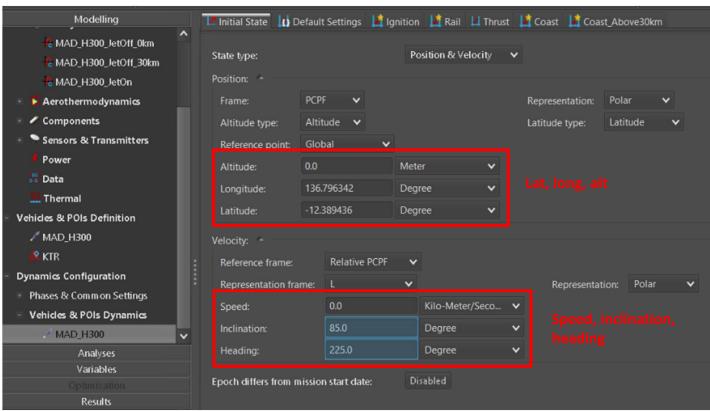
Coast Phase



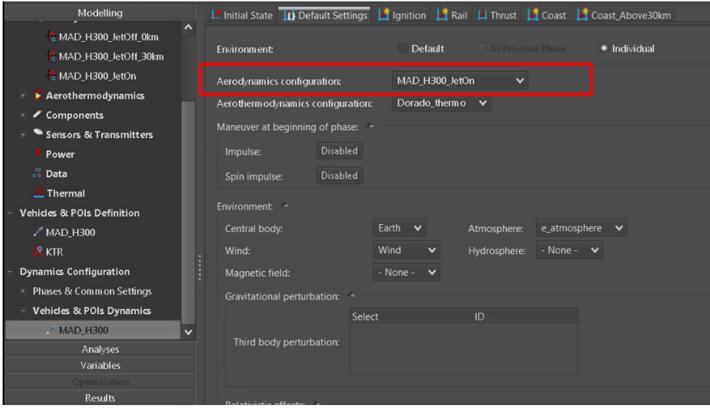
2nd Coast Phase



Initial State



Default Settings



Default aerodynamics model: No base drag

Default Settings



Default equation of motion and attitude control laws used

Equations of Motion: Inertial Velocity(Astos Model Reference)

Background

The states V_R , V_λ and V_δ specify the Cartesian components of the inertial velocity vector

$$\hat{V} = \begin{bmatrix} V_R \\ V_{\lambda} \\ V_{\delta} \end{bmatrix}_L \tag{4.60}$$

The kinematic state equations represent the kinematic relationship established by the definition of the position and the velocity states

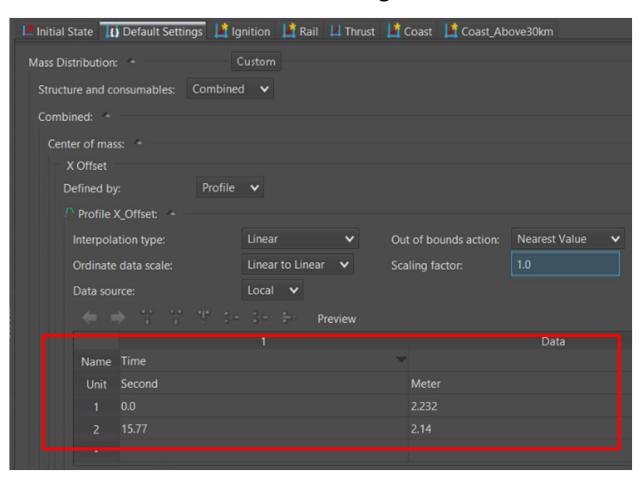
$$\frac{d}{dt} \begin{bmatrix} R \\ \lambda \\ \delta \end{bmatrix} = \begin{bmatrix} V_R \\ \frac{V_{\lambda}}{R\cos\delta} - \Omega_E \\ \frac{V_{\delta}}{R} \end{bmatrix}$$
 (4.61)

and the dynamic state equations are

$$\frac{d}{dt}\begin{bmatrix} V_R \\ V_{\lambda} \\ V_{\delta} \end{bmatrix}_L = \begin{bmatrix} \frac{1}{R} \cdot \left(V_{\lambda}^2 + V_{\delta}^2 \right) + \frac{F_R}{m} \\ \frac{1}{R} \cdot V_{\lambda} \cdot \left(V_{\delta} \cdot \tan \delta - V_R \right) + \frac{F_{\lambda}}{m} \\ -\frac{1}{R} \cdot \left(V_{\lambda}^2 \cdot \tan \delta + V_{\delta} \cdot V_R \right) + \frac{F_{\delta}}{m} \end{bmatrix}$$
(4.62)

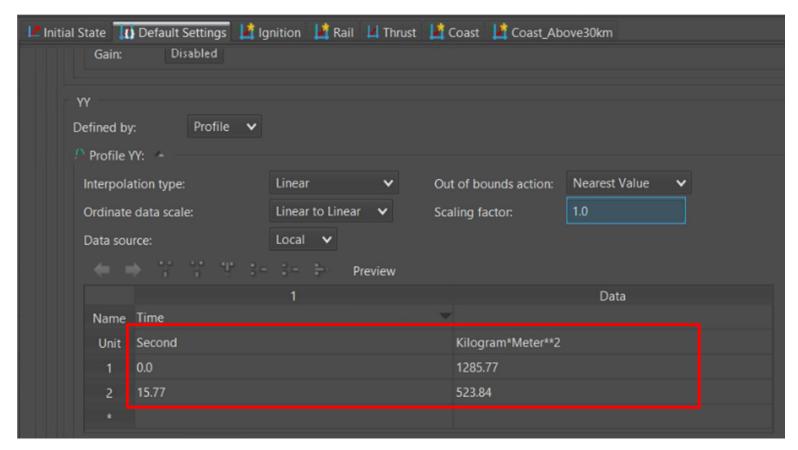
Input to the system of Eq. 4.62 is the acceleration vector acting on the vehicle resulting from gravity, aerodynamic forces, thrust or other perturbations.

Default Settings



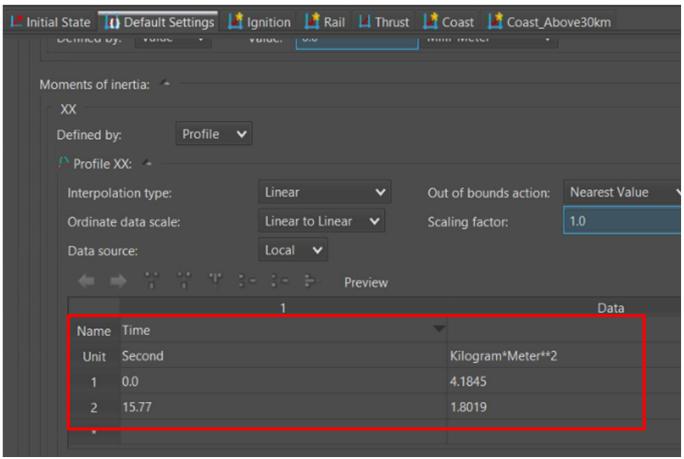
Default CoM

Default Settings



Default Mol (YY) (Same for ZZ)

Default Settings

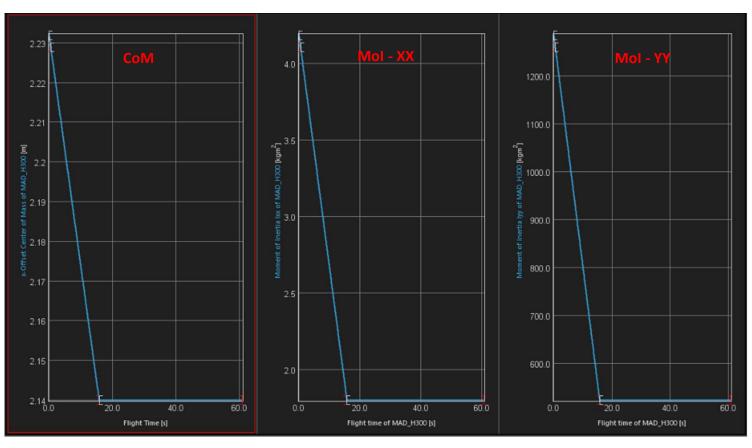


Default Mol (XX)

EQUATORIAL SPACE

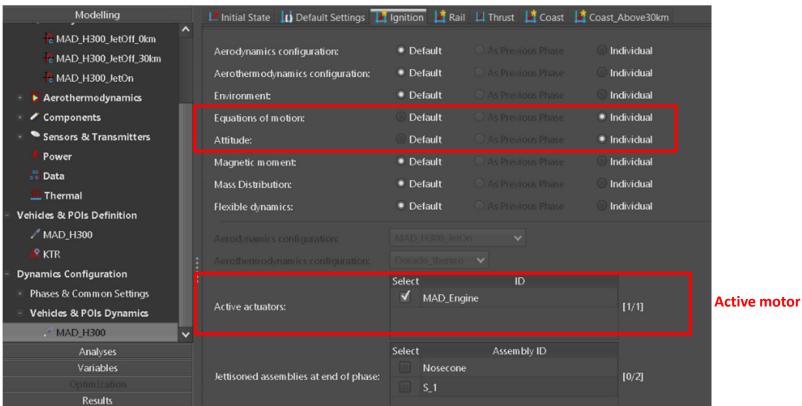
Trajectory Parameters

Default Settings

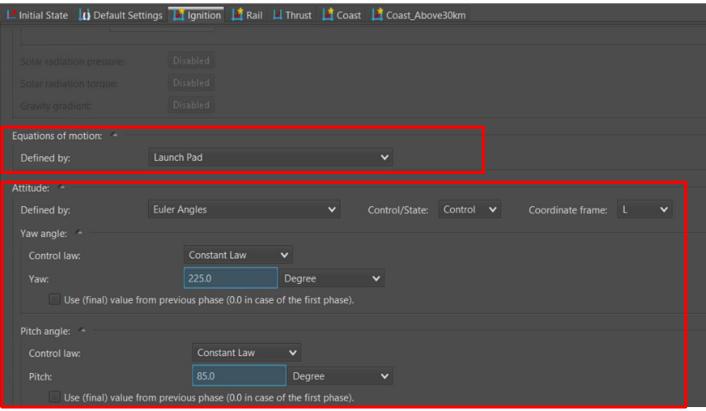


Verification of default settings

Dynamics - Ignition



Dynamics - Ignition



Equations of Motion: Launch Pad (Astos Model Reference)

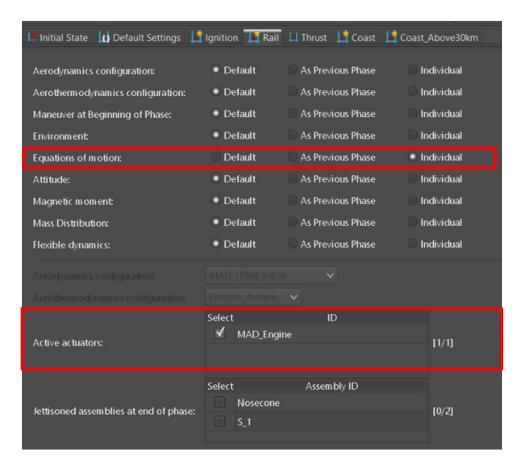
Table 4.2: Definition of flight path velocity state variables

State Variable	Definition	
R	Radial distance from planet center	
λ	East longitude / Angle between the Greenwich meridian and the meridian of the current position (positive east of Greenwich)	
δ	δ Declination angle between the equatorial plane and the current position vect (positive on the northern hemisphere)	

The kinematic state equations represent the kinematic relationship established by the definition of the position:

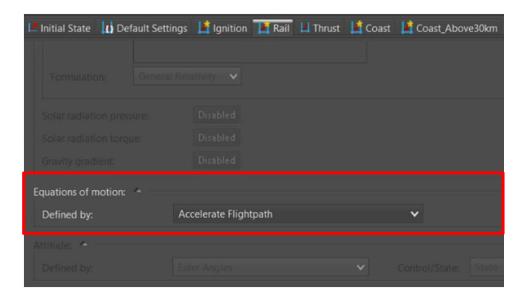
$$\frac{d}{dt} \begin{bmatrix} R \\ \lambda \\ \delta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \tag{4.65}$$

Dynamics - Rail



Active motor

Dynamics - Rail



Equations of Motion: Accelerate Flight Path (Astos Model Reference)

Background

The Cartesian components of the velocity vector along the local *L*-frame are given by:

$$\hat{V}_{k} = V \begin{bmatrix} \sin \gamma \\ \cos \gamma \sin \chi \\ \cos \gamma \cos \chi \end{bmatrix}_{L}$$
(4.31)

The kinematic state equations represent the kinematic relationship established by the definition of the position and the velocity states:

$$\frac{d}{dt} \begin{bmatrix} R \\ \lambda \\ \delta \end{bmatrix} = \begin{bmatrix} V \sin \gamma \\ \frac{V \cos \gamma \sin \chi}{R \cos \delta} \\ \frac{V \cos \gamma \cos \chi}{R} \end{bmatrix}$$
(4.32)

The dynamic state equations follow Newton's second law

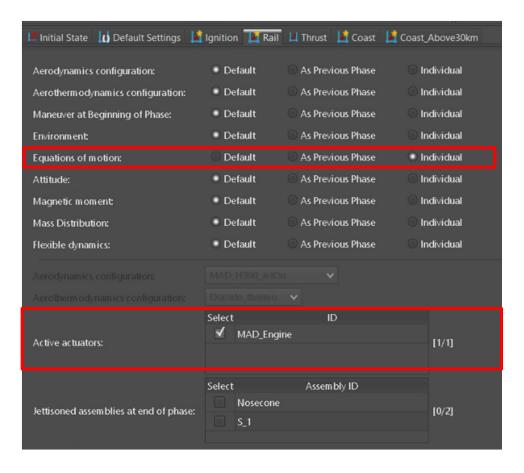
$$\frac{dV}{dt} = X + \Omega_E^2 R \cos\delta \left(\cos\delta \sin\gamma - \sin\delta \cos\gamma \cos\chi\right) \tag{4.33}$$

where Ω_E is the angular velocity of the central body about the inertial planet-centered z-axis. X, Y, Z are the components of the acceleration vector in the trajectory coordinate system (see Section 9.3.5.1):

$$\frac{\hat{F}}{m} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_T \tag{4.34}$$

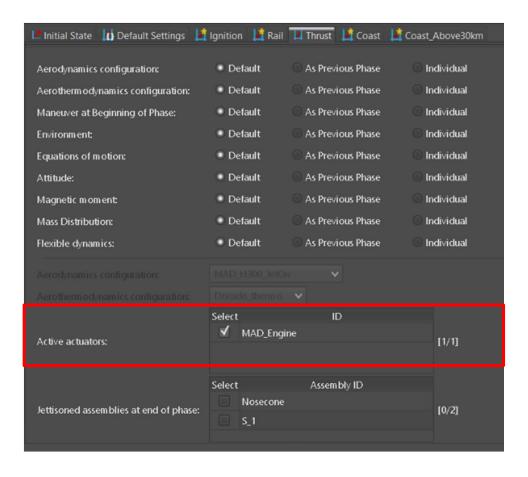
The acceleration acting on the vehicle results from gravity, aerodynamic forces, thrust or other perturbations. Note that only *X* is considered in the dynamic, whereas *Y* and *Z* are neglected (i.e. supposed to be balanced by the rail structure).

Dynamics - Rail



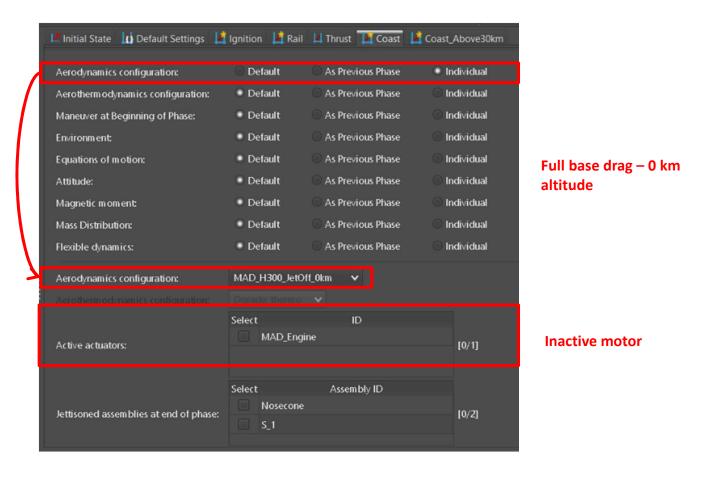
Active motor

Dynamics - Thrust

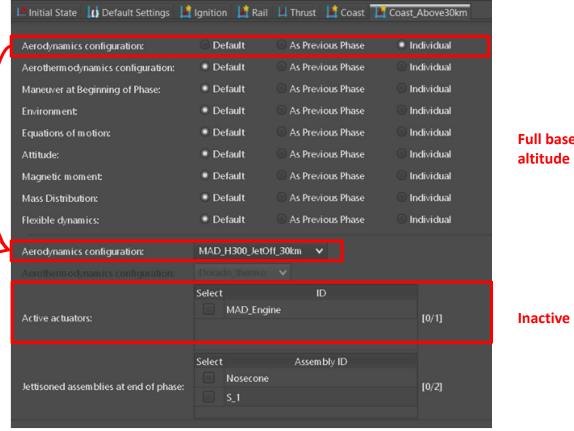


Active motor

Dynamics - Coast



Dynamics – 2nd Coast Phase



Full base drag - 30 km

Inactive motor

Modelling Guidelines

- Focus on a single phase at a time
 - Disable later phases in the "Phases & Common Settings"
- Use curve plots in the "Results" panel for verifying correctness of input/output data
- Large aerodynamic tables (i.e. 2D) can be split into series of 1D tables for simulation
 - Consequently, the same increase in the no. of trajectory phases are required since each phase utilizes a different aerodynamic table